Editorial Type:
Article Category: Research Article
 | 
Online Publication Date: 17 Jan 2013

Dean Chapman's Contributions to Tektite Science

Page Range: 76 – 110
DOI: 10.17704/eshi.31.1.a719v2801u37x5g3
Save
Download PDF

Dean Roden Chapman (1922-1995), an engineer and scientist at NASA Ames Research Center, was one of the founders of astronautics (rocket science). He used his laboratory to produce objects that are very similar to Australian tektites. There were two major questions about tektites in his day: did they come for the Earth or the Moon? And were they caused by meteor impacts or volcanic eruptions? Chapman came to believe that tektites were caused by meteor impacts on the Moon. He made many contributions to our understanding of tektites and was also one of the people who helped NASA get to the Moon. One percent of the Moon was covered with little glass spheres, but they are quite different from the tektites known on the Earth. The data from the Moon rocks was largely incompatible with the theory that terrestrial tektites are derived from the Moon. Chapman stopped publishing papers about tektites, but he remained interested in the subject for the rest of his life and believed that in the long run the lunar impact theory might become dominant again as new data was returned from the Moon. From our present understanding of tektites and the Moon, Chapman failed because he privileged the facts that he generated himself in his laboratory. He was not prepared to study the messy complexity of natural products. He was misled by the meteorite science traditions used in tektite science. He did not use appropriate statistical procedures, and because he was such a famous scientist in his own field the editors of two major journals in which he published did not properly assist him when he was working outside his area of major competence.

Adams, Ernst W. 1963. Aerodynamic analysis of tektites and their hypothetical parent bodies. In: Tektites edited by John A. O'Keefe, 150-166. Chicago: University of Chicago Press.

Adams, Ernst W. and Huffaker, R. Milton 1962a. Parent body hypothesis for origin of tektites. Nature 195, 4842, 681-684.

Adams, Ernst W. and Huffaker, R. Milton 1962b. Application of ablation analysis to the tektite problem. Journal of Geophysical Research 67: 3537.

Adams, Ernst W, and Huffaker R. Milton 1964. Aerodynamic analysis of the tektite problem. Geochemica et Cosmochemica Acta 28: 881-892.

Ahrens, L. H. and Taylor, S. R. 1961. Spectrochemical Analysis: A Treatise on the d-c Arc Analysis of Geological and Related Materials. Reading, Mass: Addison-Wesley.

Baker, G. 1959. Tektites. Memoirs of the Museum of Victoria 23: 231-246.

Baker, G. 1960. Origin of tektites. Nature 185: 291-294.

Baker, G. 1963a. Australite buttons. Geotimes 7: 26-27.

Baker, G. 1963b. Form and sculpture of tektites. In: Tektites, edited by J. A. O'Keefe, 1-24. Chicago: University of Chicago Press.

Baker, G. 1968. Australites from NNE of Morgan, South Australia. Memoirs of the Museum of Victoria 28: 39-76.

Baldwin, R. B. 1949. The Face of the Moon. Chicago: Chicago University Press.

Barnes, V. E. 1960. Distribution and origin of tektites (abstract). Geological Society of America Bulletin 51: 1919-1920

Barnes, V. E. 1963. Detrital mineral grains in tektites. Science 142: 1651-1652.

Barnes, V. E. 1964a. Rayed bubbles in tektites. Geochimica et Cosmochemica Acta 28: 1373-1375.

Barnes, V. E. 1964b Terrestrial implications of layering, bubble shape and minerals along faults in tektite origin Geochimica et Cosmochemica Acta 28, 1267-1271

Barnes, V. E. and Barnes, M. A. (eds). 1973. Tektites. Stroudsburg, Pennsylvania: Dowden, Hutchinson and Ross.

Barnes, V. E. and Russell, R. V. 1966. Devitrification of glass around collapsed bubbles in tektites. Geochemical et Cosmochemica Acta 30: 143-152.

Centolanzi, F. J. 1969. Maximum tektite size as limited by thermal stress and aerodynamic loads. Journal of Geophysical Research 74: 6723-6736

Chao, E. C. T. 1962. Stishovite, a very high pressure new mineral from Meteor Crater, Arizona. Journal of Geophysical Research 67: 419-421.

Chao, E. C. T. 1964a. Spalled, aerodynamically modified moldavite from Slavice, Moravia, Czecho-slovakia. Science 146: 790-791.

Chao, E. C. T. 1964b. New data on the nickel-iron spherules from Southeast Asian tektites and their implications. Geochimica et Cosmochemica Acta 28: 971-980.

Chao, E. C. T. 1966. Nickel-iron spherules from the Aouelloul glass of Mauritania Africa. United States Geological Survey Annual Report 1966: 169-180.

Chao, E. C. T., Shoemaker, E. M. and Madsen, B. M. 1960. First natural occurrence of coesite. Science 132: 220-222.

Chapman, D. R. 1960. Recent re-entry research and the cosmic origin of tektites. Nature 188: 353-355.

Chapman, D. 1962. Aerodynamic heating and atmospheric deceleration during entry into planetary atmospheres. USA: NASA Ames Research Center. A film (three clips) with Dean Chapman, available at: http://history.arc.nasa.gov/index.htm. http://history.arc.nasa.gov/index.htm

Chapman, D. R. 1963. On the lunar origin of tektites. Journal of Geophysical Research 68: 4305-4358.

Chapmen, D. R. 1964. On the unity and origin of australasian tektites. Geochimica et Cosmochemica Acta 28: 841-880.

Chapman, D. R. 1971. Australasian tektite geographic pattern, crater and ray origin, and theory of tektite events. Journal of Geophysical Research 76: 6309-6338.

Chapman, D. and Gault, D. E. 1967a. Critique of ‘Cometary impact and the origin of tektites’. Journal of Geophysical Research 72: 2695-2699.

Chapman, D. and Gault, D. E. 1967b. Reply to S. C. Lin's rebuttal. Journal of Geophysical Research 72: 3736-3737.

Chapman, D. R., Keil, K. and Annell, C. 1967. Comparison of Macedon and Darwin glass. Geochimica et Cosmochemica Acta 31: 1595-1603.

Chapman, D. R. and Larson, H. K. 1963. On the lunar origin of tektites. Journal of Geophysical Research, 68, 4305-4358.

Chapman, D. R., Larson, H. K. and Anderson, L. A. 1962. Aerodynamic evidence pertaining to the entry of tektites into the Earth's atmosphere. Technical Report R-134, NASA Ames Research Center. Moffett Field, California.

Chapman, D. R., Larson, H. K. and Scheiber, L. C. 1964. Population polygons of tektite specific gravity for various localities in Australia. Geochimica et Cosmochemica Acta 28: 821-839.

Chapman, D. R. and Scheiber, L. C. 1969. Chemical investigations of australasian tektites. Journal of Geophysical Research 74: 6737-6776.

Chayes, F. 1949. On ratio correlation in petrology. Journal of Geology 57: 239-254.

Cherry, R. D. and Taylor, S. R. 1959. Origin of Be10 and Al26 in tektites. Geochimica et Cosmochemica Acta 17: 176-185.

Cherry, R. D. and Taylor, S. R. 1961. Studies of tektite composition; II derivation from a quartz-shale mixture. Geochimica et Cosmochemica Acta 22: 164-168.

Compston, W. and Chapman, D. R. 1969. Sr isotope patterns within the southeast australasian strewn-field. Geochimica et Cosmochemica Acta 33: 1023-1036.

Crow, E. L., Davis, F. A. and Maxfield, M. W. 1948. Statistics Manual, with Examples from Ordnance Development. U. S. Naval Ordnance Test Station.

Darwin, C. 1844. Geological Observations on Volcanic Islands Visited During the Voyage of the HMS Beagle. London: Smith and Elder. 2nd edn, reprinted 1900 as Geological Observations on the Volcanic Islands of South America. New York and London: D. Appleton and Company.

Faul, H. 1966. Tektites are terrestrial. Science 152: 1341-1345

Fenner, C. 1934. Australites: a unique shower of glass meteorites. Mineralogical Magazine 25: 82-85.

Fudali, R. F. and Chapman, D. R. 1975. Impact survival conditions for very large meteorites, with special reference to the legendary Chinguetti meteorite. Smithsonian Contributions to the Earth Sciences 14: 55-62.

Gary, M., McAfee, R. and Wolf, C. L. 1972. Glossary of Geology. Washington D. C.: American Geolog-ical Institute.

Glass, B. P. 1970. Chromite and zircon crystals in a Muong Nong tektite. EOS Transaction of the American Geophysical Union 51: 341.

Glass, B. P. 1971. Investigation of glass recovered from Apollo 12 sample 12057. Journal of Geophysical Research 76: 5649-5657.

Glass, B. P. 1972a. Crystalline inclusions in a Muong Nong-type indochinite. Earth and Planetary Science Letters 16: 23-26.

Glass, B. P. 1972b. Comparison between lunar glass spherules and microtektites. EOS Transaction of the American Geophysical Union 53: 428.

Glass, B. P. 1973. Major element compositions of Luna 20 glass particles. Geochimica et Cosmochemica Acta 37: 841-846.

Glass, B. P. 1995. Obituary of Dean R. Chapman 1922-1995. Houston: Lunar and Planetary Institute.

Glass, B. P., Chapman, D. R. and Prasad, S. 1996. Ablated tektite from the central Indian Ocean. Meteoritics 31: 365-369.

Heinen, G. 1998. Tektites: Witnesses of Cosmic Catastrophes. Luxembourg: Linden Press.

Hipkin, R. G. 1969. The lunar surface: report of a geophysical discussion held on 1969 November 29. Quarterly Journal of the Royal Astronomical Society 10: 108-113.

King, E. A. 1962. Possible relation of tuff in the Jackson group (Eocene) to bediasites. Nature 196: 569-570.

King, E. A. 1964. An aerodynamically sculptured bediasite. Journal of Geophysical Research 69: 4731-4733.

King, E. A. 1966a. Major element composition of Georgia tektites. Nature 210: 828-829.

King, E. A. 1966b. Baddeleyite inclusion in Georgia tektite. Transaction of the American Geophysical Union 47: 145.

King, E. A. 1973. Tektite glass not in Apollo 12 sample. Science 170: 199-200.

King, E. A. 1977. The origin of tektites. American Scientist 65, 212-218

Levinson, A. A. and Taylor, S. R. 1971. Moon Rocks and Minerals; Scientific Results of the Study of the Apollo 11 Lunar Samples with Preliminary Data on Apollo 12 Samples. New York: Pergamon Press.

Lowman, P. D. 1962. Tektites vs. terrestrial rocks: a comparison of variance in compositions. Geochimica et Cosmochemica Acta 26: 561-579.

Maddalena, L. 2011. Arc jet tunnel. Arlington, TX: Aerodynamics Research Center, University of Texas at Arlington. http://arc.uta.edu/facilities/archeater.htm. http://arc.uta.edu/facilities/archeater.htm

Masterson, A. R. 1979. Index of the Proceedings of the Lunar and Planetary Science Conferences, Houston Texas, 1970-1979. New York: Pergamon Press.

McCall, J. G. H. J. 2001. Tektites in the Geological Record: Showers of Glass From the Sky. London: Geological Society of London.

McColl, D. H. and Williams, G. E. 1970. Australite distribution pattern in southern central Australia. Nature 226: 154-155.

Melosh, H. J. Impact physics constraints on the origin of tektites. In: Tektites: Witnesses of Cosmic Catastrophes edited and published by Guy Heinen, Luxembourg.

Miesch, A. T., Chao, E. C. T. and Cuttitta, F. 1966. Multivariate analysis of geochemical data on tektites. Journal of Geology 74: 673-691.

NASA. 1995. Dean R. Chapman. In: Moffitt Field, Ames Research Center. Redwood City, California: NASA website.

Nininger, H. H. 1943. The Moon as a source of tektites. Sky and Telescope 2: 12-15.

Nininger, H. H. 1967. Tektites that were partially plastic after completion of surface sculpturing. Science 157: 61-62.

Nininger, H. H. 1971. The Published Papers of H. H. Nininger: Biology and Meteoritics. Tempe, Arizona: Center for Meteorite Studies, Arizona State University.

O'Keefe, J. A. 1963. Tektites. Chicago: University of Chicago Press.

O'Keefe, J. A. 1976. Tektites and their Origin. In: NASA, Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. http://originoftektites.com. http://originoftektites.com

Patton, H. J. and Taylor, S. R. 2011. The apparent explosion moment: inferences of volumetric moment due to source medium damage by underground nuclear explosions (Abstract). Journal of Geophysical Research-Solid Earth 116: B03310.

Povenmire, H. 2003. Tektites: A Cosmic Enigma. Fort Myers, Florida: Florida Fireball Network.

Scheiber, L. C. 1970. Comparison of tektite populations polygons of bulk specific gravity, true material specific gravity, and refractive index. Journal of Geophysical Research 75: 7513-7515.

Schnetzler, Charles C. 1971. The lunar origin of tektites: RIP (Abstract) Meteoritics 5, 221-222.

Senate, United States 1995. Memorial resolution, Dean R. Chapman 1922-1995. Senate Document 4678. Washington D. C.

Spencer, L. J. 1932. Meteorite craters. Nature 129: 781-784.

Spencer, L. J. 1933a. Origin of tektites I. Nature 131: 117-118.

Spencer, L. J. 1933b. Origin of tektites II. Nature 132: 571 and 876.

Spencer, L. J. 1937. The tektite problem. Mineralogical Magazine 24: 503-506.

Spencer, L. J. and Clayton, P. A. 1934. Silica-glass from the Libyan desert. Mineralogical Magazine 23: 501-508.

Suess, H. E. 1951. Gas content and age of tektites. Geochimica et Cosmochemica Acta 2: 76-79.

Taylor, S. R. 1959. The significance of K/Rb rations for theories of tektite origin. Geochimica et Cosmochemica Acta 15: 370-372.

Taylor, S. R. 1961. Studies of tektite composition; I. inverse relationship between SiO2 and the other major constituents. Geochimica et Cosmochemica Acta 22: 155-163.

Taylor, S. R. 1962. Consequences for tektite composition of an origin by meteoritic splash. Geochimica et Cosmochemica Acta 26: 915-920.

Taylor, S. R. (ed.). 1969. Third International Tektite Symposium. Corning, New York, Corning Museum of Glass and Smithsonian Institution

Taylor, S. R. 1970. Lake Toba, Sumatra, and the origin of tektites. Nature 227: 1125.

Taylor, S. R. 1973. Tektites: a post-Apollo view. Earth Science Reviews 9: 101-123.

Taylor, S. R. 1975. Lunar Science: A Post-Apollo View; Scientific Results and Insights from the Lunar Samples. New York: Pergamon Press.

Taylor, S. R. 1982. Planetary Science: A Lunar Perspective. Houston: Lunar and Planetary Institute.

Taylor, S. R. 1992. Solar System Evolution: A New Perspective: an Inquiry into the Chemical Composition, Origin, and Evolution of the Solar System. Cambridge: Cambridge University Press.

Taylor, S. R. 2000. Destiny or Chance: Our Solar System and its Place in the Cosmos. Cambridge [England]: Cambridge University Press.

Taylor, S. R. and Epstein, S. E. 1969. Correlations between 18O/16O ratio and chemical compositions of tektites. Journal of Geophysical Research 74: 6824-6844.

Taylor, S. R. and Levinson, A. A. 1969. Geochemistry of tektites. Geochimica et Cosmochemica Acta 33: 1013-1147.

Taylor, S. R. and McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford, Boston, Palo Alto: Blackwell Scientific.

Taylor, S. R. and McLennan, S. M. 2009. Planetary Crusts: Their Composition, Origin and Evolution. Cambridge, UK; New York: Cambridge University Press.

Tilley, C. E. 1960. Memorial of Leonard James Spencer. The American Mineralogist 45: 403-406.

Urey, H. C. 1955. On the origin of tektites. Proceedings of the National Academy of Science 41: 27-31.

Urey, H. C. 1957. The origin of tektites. Nature 179: 556-557.

Urey, H. C. 1958. The origin of tektites. Nature 182: 1078.

Vincenti, W. G., Boyd, J. W. and Bugos, G. E. 2007. H. Julian Allen: an appreciation. Annual Review of Fluid Mechanics 39: 1-17

Wade, M. 2001. Early Russian ballistic missiles. In: Wade, M., Encyclopedia Astronautica. http://www.astronautix.com

Wolcott, R. H. 1898. The occurrence of so-called obsidian bombs in Australia. Proceeding of the Royal Society of Victoria 11: 23-53.

Young, D. A. 2012. Origin of the American quantitative igneous rock classification: Part 5. Earth Sciences History 31: 1-49.

Zähringer, J. 1963. Isotopes in tektites. In: Tektites, edited by John A. O'Keefe, 137-149. Chicago: University of Chicago Press.

  • Download PDF